
Summing
Time for Summin’ Different
Aidan Irwin, Dylan Prior, Finn Riches, and Melvin Page

Introduction
Our project began with the observation that taking a cumulative sum (running total)
of the odd numbers seemed to return the square numbers: 1 = 12, 1 + 3 = 4 = 22,
1 + 3 + 5 = 9 = 32 and so on. Then, it became apparent that a similar process
worked to get numbers of any power, as explained below.

Methods
First, we start with the natural numbers (N). These are the positive whole numbers
starting from 1. N = 1, 2, 3, 4, 5, 6, 7, 8, 9 ...
We then remove every 2nd number, beginning with 2, giving R1. And finally, we
find the cumulative sum (running total) of this, giving CR1

.

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
R1 1 3 5 7 9 11 13 15 ...
CR1

1 4 9 16 25 36 49 64 ...

This algorithm gives the square numbers, and similar can be done to reach the cube
numbers:
Remove every 3rd number beginning with 3 from N, giving R1, then find the cu-
mulative sum of that (CR1

), then remove every 2nd number starting with the 2nd
value, giving R2, and finally find the cumulative sum of that (CR2

).

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
R1 1 2 4 5 7 8 10 11 13 14 ...
CR1

1 3 7 12 19 27 37 48 61 75 ...
R2 1 7 19 37 61 ...
CR2

1 8 27 64 125 ...

Similar can be done in order to find numbers of any power, however the scope of
this project only encompasses up to the powers of 3 for the majority of the project.

Main Objectives
1. Prove that you can use summations to calculate the powers of 2

2. Prove that you can use summations to calculate the powers of 3

3. Explore the efficiency of this method compared to traditional approaches

4. Develop a GUI to show how our method works

5. Use summation to calculate Euler’s Number

6. Explore other applications of the method, including looking into what happens
with modular arithmetic or when we vary the gap removed in a non-linear fash-
ion

Proof of the Process for the Square Numbers
Let’s consider the natural numbers from 1 to n:

Nn = 1, 2, 3, ..., n− 1, n

By removing every other number, we can get an arithmetic progression (a sequence
of numbers that begin at a set value and where the difference between each term is
a constant) of first term a = 1 and common difference d = 2.

R1 = a, a+ d, a+ 2d, ..., a+ (n− 2)d, a+ (n− 1)d

Now, let’s consider the cumulative sum of the first n terms of a general arithmetic
progression with first term a and common difference d - the cumulative sum of this
arithmetic progression, CR1

.

CR1
= a+ (a+ d) + (a+ 2d) + ...+ (a+ (n− 2)d) + (a+ (n− 1)d)

And by reversing the order:

CR1
= (a+ (n− 1)d) + (a+ (n− 2)d) + ...+ (a+ 2d) + (a+ d) + a

And now if we list these side-by-side and find the sum of each term:

Sum to n (CR1
) CR1

reversed 2CR1

a + a+ (n− 1)d = 2a+ (n− 1)d
+ + +

(a+ d) + a+ (n− 2)d = 2a+ (n− 1)d
+ + +
... ... ... (continuing on n times)
+ + +

a+ (n− 2)d + (a+ d) = 2a+ (n− 1)d
+ + +

a+ (n− 1)d + a = 2a+ (n− 1)d
= = =
CR1

+ CR1
n(2a+ (n− 1)d)

Hence,
2CR1

= n(2a+ (n− 1)d)

CR1
=

n

2
(2a+ (n− 1)d) (1)

And this works for any arithmetic progression. Using a = 1 and d = 2 as outlined
previously for every 2nd number:

CR1
=

n

2
(2 + 2(n− 1))

CR1
=

1

2
(2n2)

CR1
= n2

Hence we have proved that the first n numbers with every 2nd number removed
will always sum to the nth square number.

Proof of the Process for the Cube Numbers
First, we start with the natural numbers:

N = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...

Next, remove every 3rd number, starting with 3:

R1 = 1, 2, 4, 5, 7, 8, 10, 11...

Then split the resulting sequence into two, one with the first of each “pair” of
numbers between each gap and one with the second:

P1 = 1, 4, 7, 10, ...

P2 = 2, 5, 8, 11, ...

Then find the cumulative sum of these:

CP1
= 1, 5, 12, 22, ...

CP2
= 2, 7, 15, 26, ...

These can be represented as equations to find any term within them, using the sum-
mation formula (as proven earlier)

n

2
(2a+ (n− 1)d) (1)

yielding the following:

CP1
=

n

2
(2 + 3(n− 1)) =

3n2 − n

2

CP2
=

n

2
(4 + 3(n− 1)) =

3n2 + n

2

To find n3, we must find (n− 1)3 + (CP1
)n + (CP2

)n - (P2)n
For instance when n = 2, (n− 1)3 = 1, (CP1

)n = 5, (CP2
)n = 7, and (P2)n = 5, so

23 = 1 + 5 + 7− 5 = 8
Let’s find what a generalised CP1

+ CP2
− P2 equals:

P2 = 3n− 1

CP1
+ CP2

− P2 = 3n2 − 3n+ 1

Now, let’s find a generalised form of the previous cube number, (n− 1)3:

(n− 1)3 = n3 − 3n2 + 3n− 1

And finally, let’s combine these two:

(n3 − 3n2 + 3n− 1) + (3n2 − 3n+ 1) = n3

Hence by mathematical induction n3 can be found by applying the algorithm on the
previous cube number (n− 1)3 for any n.

Efficiency Compared to Traditional Methods
Throughout this project, we have looked at how our method of generating the pow-
ers of two and beyond compares with more traditional methods of achieving the
same outcome. The first comparison we attempted was seeing how our summation
stacked up against simply multiplying numbers together - also known as the multi-
plicative approach - e.g. doing 22 as 2× 2 = 4.
In order to compare the efficiency of the two approaches, we have used Big O
notation, which is a way of showing how much more time the processing of an
algorithm takes as the size of its input increases.
The two scatter plots below show the outcomes of this comparison:

Graph 1 illustrates that while our code shares the same Big O complexity - O(n) -
as the multiplicative approach, it performs significantly slower in generating square
numbers as the size of the list increases. This highlights the inefficiency of our
implementation compared to direct multiplication.
Graph 2 demonstrates that, for generating lists of increasing powers, our code ex-
hibits a much higher computational cost, with a Big O complexity of O(n2) com-
pared to the O(n) complexity of the multiplicative approach. This difference be-
comes more greater as the list size grows.

Another Application of Summation:
Calculating Euler’s Number
Euler’s number, e, was originally encountered by the Swiss mathematician Jacob
Bernoulli while studying compound interest. Across mathematics, it is a very im-
portant number - and it can be calculated using summations.
A definition for e goes as follows:

e = lim
n→∞

(
1 +

1

n

)n

This expression arises from the computation of compound interest, where n is the
number of intervals in the year on which the compound interest is evaluated. For
example n = 12 for monthly compounding.

Euler proved that e is the infinite sum:

e =

∞∑
k=0

1

k!

He did this by first expanding the original expression by using the binomial theorem
to result in: (

1 +
1

n

)n

=

n∑
k=0

n!

k!(n− k)!
× 1

nk

If we consider the expression:
n!

(n− k)!

This can be written in the form:

n× (n− 1)× (n− 2)× ...× (n− k + 1)× (n− k)× ...× 3× 2× 1

(n− k)× (n− k − 1)× (n− k − 2)× ...× 3× 2× 1

This means that the fraction will cancel up to (n− k + 1).

This means that the expression can then be simplified into:

n∑
k=0

n× (n− 1)× (n− 2)...(n− k + 1)

k!× nk

As n grows larger, the expression below tends to 1.

n× (n− 1)× (n− 2)...(n− k + 1)

nk
→ 1

This is because if we break up the terms individually to create the expression:

n

n
× n− 1

n
× n− 2

n
× ...× n− k + 1

n

Each factor can be represented as the form n−j
n

for j = 0, 1, 2, ..., k − 1. This means that as n → ∞, n−j
n → 1.

Therefore the entire expression of

n∑
k=0

n× (n− 1)× (n− 2)...(n− k + 1)

k!× nk

can be simplified into:
n∑

k=0

1

k!

And as previously stated, n → ∞. Therefore, e can be represented by the form:

e =

∞∑
k=0

1

k!

A GUI Showcasing Our Algorithm
As part of this project, we set out to create a graphical user interface that visually
represents our algorithm. This was coded in the form of an online web application,
which uses JavaScript, Svelte/SvelteKit, TailwindCSS, D3.js, and Vercel.

The above image shows the app calculating n3 using our algorithm and plotting the
values on a graph with a logarithmic y-axis.

Accessible at https://summingemc.com, the site allows you to input a value
to get numbers to the power of (i.e. calculate nm by selecting the value of m) and
up to what number it uses. It then creates a table with the each step to the final
sequence of nm by using our algorithm. A graph is plotted of each row in the table,
showing visually how the final sequence is obtained. There is also the option to use
logarithmic values for the y-axis on this graph.

Further Research
Due to the time constraints we faced during the project we were left with a few
things we ran out of time to investigate in further depth. These include:

• Prove that our algorithm will work to calculate nm for any integer m.

• Research further applications of this method to find square numbers, such as
using it to easily get from one square to the next.

Conclusions
• Throughout the project, we have shown unconventional uses for summation in

mathematics, mainly focusing on their applications to generate numbers to a
power.

• We proved that this algorithm works for computing the powers of 2 and 3.

• We investigated the efficiency of our algorithm when compared to more tra-
ditional techniques, showing that in theory they should be approximately the
same.

• We also demonstrated how summation can be used to derive Euler’s number.

• Additionally, we explored the use of the algorithm on modular arithmetic and
looked at what happens when we vary the gap of numbers removed in a non-
linear fashion, but did not find anything of note.

Acknowledgements
We would like to thank Professor Kyle Wedgwood for setting us this project and
providing support throughout, as well as Dr Ed Horncastle for leading the Exeter
Mathematics Certificate and providing support to us throughout. We would also
like to thank Chris Child, Alex Toogood-Johnson, and Lyall Stewart for their in-
valuable support in proofreading our poster. We would also like to acknowledge
Orlando Graham and Emily Millington for their help in completing this poster.

Contact Details
team@summingemc.com
Aidan Irwin: aidan@summingemc.com / aidanirwin@exe-coll.ac.uk
Dylan Prior: dylan@summingemc.com / dylanprior@exe-coll.ac.uk
Finn Riches: finn@summingemc.com / finnriches@exe-coll.ac.uk
Melvin Page: melvin@summingemc.com / melvinpage@exe-coll.ac.uk
See https://summingemc.com/poster for an online copy of this poster.


